Role of autophagy in tumor necrosis factor-α-induced apoptosis of osteoblast cells
نویسندگان
چکیده
The aim of this study is to investigate the role of tumor necrosis factor-α (TNF-α) in apoptosis and autophagy of mouse osteoblast MC3T3-E1 cells, as well as the crosstalk between autophagy and apoptosis. Mouse osteoblast MC3T3-E1 cells were cultured in vitro and treated with 5-fluorouracil (5-FU), rapamycin, 3-methyl adenine (3-MA) and TNF-α either alone or in combination, respectively. MTT assays were used to monitor the cell viability upon different treatments. Annexin-V-FITC/propidium iodide (PI) staining was used to detect the apoptotic rate of osteoblasts. Autophagic structure and apoptotic bodies were visualized by transmission electron microscopy (TEM). Western blot analysis was performed to detect the autophagic marker LC3-II/I, p62 and apoptotic marker cleaved caspase-3. TNF-α inhibits MC3T3-E1 cell viability in a dose-dependent and time-dependent manner. Annexin-V-FITC/PI staining, coupled with TEM, showed that TNF-α induced cell apoptosis and autophagy in MC3T3-E1 cells. The autophagy inducer rapamycin ameliorated TNF-α-induced apoptosis. In contrast, 3-MA, which is an autophagy inhibitor, caused an exaggerated induction of TNF-α-induced apoptosis. TNF-α upregulated autophagy marker LC3-II/I, but downregulated p62 in osteoblasts. Combined treatment of rapamycin and TNF-α further exaggerated this effect, whereas co-treatment of 3-MA and TNF-α decreased LC3-II/I, but increased p62 compared with TNF-α alone. In addition, TNF-α caused an induction of apoptotic marker cleaved caspase-3. TNF-α-mediated induction of cleaved caspase-3 was downregulated by rapamycin, but upregulated by 3-MA, respectively. TNF-α induced both autophagy and apoptosis in osteoblasts, and upregulated autophagy protects the cell by reducing TNF-α-induced apoptosis.
منابع مشابه
Therapeutic effect of psoralen on muscle atrophy induced by tumor necrosis factor-α
Objective(s): To observe and determine the effect and mechanism of psoralen on tumor necrosis factor-α (TNF-α)-induced muscle atrophy.Materials and Methods: Three sets of C2C12 cells, including blank control, TNF-α (10 or 20 ng/ml) treatment and a TNF-α (10 or 20 ng/ml) plus psoralen (80 μM) administration were investigated. Cell viabili...
متن کاملCarcinoembryonic Antigen Expression and Resistance to Radiation-and 5-Fluorouracil-Induced Apoptosis and Autophagy
Understanding the mechanism of tumor resistance is critical for cancer therapy. In this study, we investigated the effect of carcinoembryonic antigen (CEA) overexpression on UV-and 5-fluorouracil (5-FU)-induced apoptosis and autophagy in colorectal cancer cells. We used histone deacetylase (HDAC) inhibitor, NaB and DNA demethylating agent, 5- azacytidine (5-AZA) to induce CEA expression in HT29...
متن کاملRole of Caspases and Reactive Oxygen Species in Rose Bengal-Induced Toxicity in Melanoma Cells
Objective We have previously shown that Rose Bengal (RB) alone, not as a photosensitiser, could induce apoptotic- and non-apoptotic cell death in different melanoma cell lines. To clarify RB-induced toxicity mechanisms, role of caspases and reactive oxygen specious (ROS) were studied in melanoma cells. Material and Methods Human melanoma cell lines, Me 4405 and Sk-Mel-28 were cultured in DM...
متن کاملTrahalose Activates Autophagy and Prevents Hydrogen Peroxide-Induced Apoptosis in the Bone Marrow Stromal Cells
Bone marrow stromal stem cells (BMSCs) play a significant role in cell therapy. These cells quickly die after transplantation to the affected area due to oxidative stress. The natural disaccharide, trehalose which can be known as autophagy inducer. The present study aimed to investigate the role of trehalose in preventing BMSCs from oxidative stress caused by H2O2. BMSCs were isolated from the ...
متن کاملTrahalose Activates Autophagy and Prevents Hydrogen Peroxide-Induced Apoptosis in the Bone Marrow Stromal Cells
Bone marrow stromal stem cells (BMSCs) play a significant role in cell therapy. These cells quickly die after transplantation to the affected area due to oxidative stress. The natural disaccharide, trehalose which can be known as autophagy inducer. The present study aimed to investigate the role of trehalose in preventing BMSCs from oxidative stress caused by H2O2. BMSCs were isolated from the ...
متن کامل